Abstract: |
In this talk, we first review the application of the heat equation to elliptic problems. Then, we report some recent results concerning the coupled Schr\odinger system
\begin{equation}
\left\{
\begin{array}{lr}
-{\Delta}u_j+ u_j=\mu_j u_j^3+\sum_{i\neq j}\beta_{ij}u_j u_i^2\mbox{ in }\mathbb{R}^n ,\nonumber\
u_j\in H_r^1(\mathbb{R}^n)\mbox{ for }j=1,\cdots,N\nonumber
\end{array}
\right.
\end{equation}
and the asymptotically linear problem
\begin{equation}
\left\{
\begin{array}{lr}
-{\Delta}u+\lambda u=\frac{u^3}{1+s u^2}\mbox{ in }\Omega\nonumber,\
u\in H_{0}^1(\Omega)\nonumber
\end{array}
\right.
\end{equation}
based on the heat equation approach. |
|