Abstract: |
In this investigation, we delve into the dynamics of an eco-epidemic model, considering the intertwined influences of fear, refuge-seeking behavior, and alternative food sources for predators with selective predation. We extend our model to incorporate the impact of fluctuating environmental noise on system dynamics. The deterministic model undergoes thorough scrutiny to ensure the positivity and boundedness of solutions, with equilibria derived and their stability properties meticulously examined. Furthermore, we explore the potential for Hopf bifurcation within the system dynamics. In the stochastic counterpart, we prioritize discussions on the existence of a globally positive solution. Through simulations, we unveil the stabilizing effect of the fear factor on susceptible prey reproduction, juxtaposed against the destabilizing roles of prey refuge behavior and disease prevalence intensity. Notably, when disease prevalence intensity is too low, the infection can be eradicated from the eco-system. Our deterministic analysis reveals a complex interplay of factors: the system destabilizes initially but then stabilizes as the fear factor suppressing disease prevalence intensifies, or as predators exhibit a stronger preference for infected prey over susceptible ones, or as predators are provided with more alternative food sources. |
|