Special Session 6: Modeling and Data Analysis for Complex Systems and Dynamics

Bistability in a Model of Hepatitis B Virus Dynamics
Hayriye Gulbudak
University of Louisiana at Lafayette
USA
Co-Author(s):    
Abstract:
Understanding the mechanisms responsible for different clinical outcomes following hepatitis B infection requires a systems investigation of dynamical interactions between the virus and the immune system. To help elucidate mechanisms of protection, we developed a deterministic mathematical model of hepatitis B infection that accounts for cytotoxic immune responses resulting in infected cell death, non- cytotoxic immune responses resulting in infected cell cure and protective immunity from reinfection, and cell proliferation. We analyzed the model and presented outcomes based on three important disease markers: the basic reproduction number R0, the infected cells death rate (describing the effect of cytotoxic immune responses), and the liver carrying capacity K (describing the liver susceptibility to infection). Using asymptotic and bifurcation analysis techniques, we determined regions where virus is cleared, virus persists, and where clearance-persistence is determined by the size of viral inoculum. These results can guide the development of personalized intervention.