Special Session 74: Recent Advances in Local and Non-local Elliptic PDEs

Multiplicity of solutions for mixed local-nonlocal elliptic equations with singular nonlinearity

Kaushik Bal
Indian Institute of Technology, Kanpur
India
Co-Author(s):    Stuti Das
Abstract:
We prove multiplicity of solutions for the mixed local-nonlocal elliptic equation of the form $\begin{eqnarray*} \begin{split} -\Delta_pu+(-\Delta)_p^s u &= \frac{\lambda}{u^{\gamma}}+u^r \text { in } \Omega, \ u > 0 \text{ in } \Omega,\ u = 0 \text { in }\mathbb{R}^n \backslash \Omega; \end{split} \end{eqnarray*}$ where $\begin{equation*} (-\Delta )_p^s u(x)= c_{n,s}\operatorname{P.V.}\int_{\mathbb{R}^n}\frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{n+sp}} d y. \end{equation*}$ Under the assumptions that $\Omega$ is a smooth bounded domain in $\mathbb{R}^{n}$, $1$