Abstract: |
We construct finite time blowup solutions to the parabolic-elliptic Keller-Segel system
\[\pa_t u = \Delta u - \nabla \cdot (u \nabla \mathcal{K}_u), \quad -\Delta \mathcal{K}_u = u \quad \textup{in}\;\; \mathbb{R}^d,\; d = 3,4,\]
and derive the final blowup profile
\[ u(r,T) \sim c_d \frac{|\log r|^\frac{d-2}{d}}{r^2} \quad \textup{as}\;\; r \to 0, \;\; c_d > 0.\]
To our knowledge this provides a new blowup solution for the Keller-Segel system, rigorously answering a question by Brenner, Constantin, Kadanoff, Schenkel, and
Venkataramani (Nonlinearity, 1999). |
|