Special Session 29: Mean field stochastic control problems and related topics
Organizer(s): Juan Li , Rainer Buckdahn

Parallel Session 9 :: Wednesday, 12/18, 8:00-10:00                  Capital Suite 10
 8:00-8:30  Rainer Buckdahn (Universite de Bretagne Occidentale, France)
 Optimal control problems with generalized mean-field dynamics and viscosity solution to Master Bellman equation
 8:30-9:00  Laurent Denis (Le Mans University, France)
 Stochastic PDEs driven by $G-$Brownian motion and the associated Backward Doubly Stochastic Differential Equations
 9:00-9:30  Juan Li (Shandong University, Peoples Rep of China)
 Mean field stochastic control problems under sublinear expectation
 9:30-10:00  Brahim BM Mezerdi (King Fahd University of Petroleum and Minerals, Saudi Arabia)
 On Some Generic Properties of Mean-Field Stochastic Differential Equations

Parallel Session 10 :: Wednesday, 12/18, 12:30-14:30                 Capital Suite 10
 12:30-13:00  Zhiyong Yu (Shandong University, Peoples Rep of China)
 Exact Controllability for Linear Stochastic Game-Based Control Systems
 13:00-13:30  Qi Zhang (Fudan University, Peoples Rep of China)
 Some New Results on Entropy Regularized Backward Stochastic Control Systems
 13:30-14:00  Qingmeng Wei (Northeast Normal Univeristy, Peoples Rep of China)
 Linear-Quadratic Optimal Control Problem for Mean-Field Stochastic Differential Equations with a Type of Random Coefficients
 14:00-14:30  Jing Zhang (Fudan University, Peoples Rep of China)
 Backward Stochastic Partial Differential Equations with Conormal Boundary Conditions

Parallel Session 11 :: Wednesday, 12/18, 14:45-16:45                  Capital Suite 10
 14:45-15:15  Yunzhang Li (Fudan University, Peoples Rep of China)
 Fractional BSPDEs with Applications to Optimal Control of Partially Observed Systems with Jumps
 15:45-16:15  Wenqiang Li (Shandong University, Peoples Rep of China)
 Mean Field Games of Major-Minor Agents with Recursive Functionals
 16:15-16:45  Chuanzhi Xing (Shandong University, Peoples Rep of China)
 Path-dependent controlled mean-field coupled forward-backward SDEs. The associated stochastic maximum principle