Special Session 12: Hyperbolic Partial Differential Equations and Applications
Organizer(s): Yachun Li , Ming Mei , Ronghua Pan

Parallel Session 5 :: Tuesday, 12/17, 8:00-10:00                 Conference Hall B (D)
 8:30-9:00  Ronghua Pan (Georgia Institute of Technology, USA)
 Rayleigh-Taylor instability and beyond
 9:00-9:30  Yoshihiro Ueda (Kobe University, Japan)
 Stability of stationary solutions for viscoelastic fluids in half-space
 9:30-10:00  Runmei Du (Changchun University of Technology, Peoples Rep of China)
 Local existence and uniqueness of the strong solution to the heat and moisture transport system in fibrous porous media

Parallel Session 6 :: Tuesday, 12/17, 12:30-14:30                 Conference Hall B (D)
 12:30-13:00  Yachun Li (Shanghai Jiao Tong University, Peoples Rep of China)
 Non-uniqueness in law of Leray solutions to 3D forced stochastic Navier-Stokes equations
 13:00-13:30  Raffaele Folino (Universidad Nacional Autonoma de Mexico, Mexico)
 Spectral stability of weak dispersive shocks in quantum hydrodynamics with nonlinear viscosity
 13:30-14:00  Xulong Qin (Sun Yat-sen University, Peoples Rep of China)
 Vanishing Shear Viscosity and Boundary Layer for the Navier-Stokes Equations with Cylindrical Symmetry and Planar MHD system
 14:00-14:30  Zhaoyang Shang (Shanghai Lixin University of Accounting and Finance, Peoples Rep of China)
 Global Existence and Convergence of Large Strong Solutions to the 3D Full Compressible Navier Stokes Equations

Parallel Session 7 :: Tuesday, 12/17, 14:45-16:45                 Conference Hall B (D)
 14:45-15:15  Richard Yue-Jun RYJ Peng (University of Clermont Auvergne, France)
 Global large smooth solutions and relaxation limit of isothermal Euler equations
 15:15-15:45  Debora Amadori (University of L`Aquila, Italy)
 Unconditional flocking for weak solutions to self-organized systems of Euler-type
 15:45-16:15  Haitong Li (Changchun University of Technology, Peoples Rep of China)
 Large Time Behaviors of Solutions to the Euler / Euler-Poisson Equations with Time-dependent Damping
 16:15-16:45  Lv Cai (Shanghai University, Peoples Rep of China)
 Sharp lifespan estimate for the compressible Euler system with critical time-dependent damping in $\R^2$