Abstract: |
In an inverse boundary problem, one seeks to determine the coefficients of a PDE inside a domain, describing internal properties, from the knowledge of boundary values of solutions of the PDE, encoding boundary measurements. Applications of such problems range from medical imaging to non-destructive testing. In this talk, starting with the fundamental Calderon inverse conductivity problem, we shall first discuss inverse boundary problems for first-order perturbations of biharmonic operators in the setting of compact Riemannian manifolds with boundary. Specifically, we shall present a global uniqueness result as well as a reconstruction procedure for the latter inverse boundary problem on conformally transversally anisotropic Riemannian manifolds of dimensions three and higher. Finally, we shall also discuss briefly inverse boundary problems for nonlinear magnetic Schroedinger operators on a compact complex manifold, illustrating the recent insight that the presence of nonlinearity may help when solving inverse problems. |
|