Special Session 28: Qualitative theory of nonlinear elliptic and parabolic equations

Elliptic Hamilton-Jacobi systems through Lane-Emden Hardy-H\`{e}non equations

Marta Garcia-Huidobro
Pontificia Universidad Catolica de Chile
Chile
Co-Author(s):    Marie Francoise Bidaut-Veron
Abstract:
We are concerned with the study of the solutions of any sign of the system \begin{equation*} \left\{ \begin{array}{c} {-\Delta u}_{1}=\left\vert \nabla u_{2}\right\vert ^{p}, \ {-\Delta u}_{2}=\left\vert \nabla u_{1}\right\vert ^{q},% \end{array}% \right. \end{equation*}% in a domain of $\mathbb{R}^{N},$ $N\geqq 3$ and $p,q>0,$ $pq>1..$ We show their relation with Lane-Emden Hardy-H\`{e}non equations \begin{equation*} -{\Delta }_{\mathbf{p}}^{\mathbf{N}}w{=\varepsilon r}^{\sigma }w^{\mathbf{q}% },\qquad \varepsilon =\pm 1, \end{equation*}% where $u\mapsto {\Delta }_{\mathbf{p}}^{\mathbf{N}}{u}$ $(\mathbf{p}>1)$ is the $\mathbf{p}$-Laplacian in dimension $\mathbf{N,}$ $\mathbf{q}>\mathbf{p}% -1$ and $\sigma \in \mathbb{R}.$ We make a complete description of the radial solutions of the system and of the Hardy-Henon equations and give nonradial a priori estimates and Liouville type results.