Special Session 84: Recent developments in understanding of nonlinear phenomena in fluid dynamics, biology, statistical mechanics and optics

Nonlocal stochastic-partial-differential-equation limits of spatially correlated noise-driven spin systems derived to sample a canonical distribution

Katie Newhall
University of North Carolina at Chapel Hill
USA
Co-Author(s):    
Abstract:
For a noisy spin system, we derive a nonlocal stochastic version of the overdamped Landau-Lipshitz equation designed to respect the underlying Hamiltonian structure and sample the canonical or Gibbs distribution while being driven by spatially correlated (colored) noise that regularizes the dynamics, making this Stochastic partial differential equation mathematically well-posed. We begin from a microscopic discrete-time model motivated by the Metropolis-Hastings algorithm for a finite number of spins with periodic boundary conditions whose values are distributed on the unit sphere. We demonstrate that for colored noise, the method used to project the noise onto the sphere and conserve the magnitude of the spins impacts the equilibrium distribution of the system, as coloring projected noise is not equivalent to projecting colored noise. In a specific scenario we show this break in symmetry vanishes with vanishing proposal size; the resulting continuous-time system of Stochastic differential equations samples the canonical distribution and preserves the magnitude of the spins while being driven by colored noise. Taking the continuum limit of infinitely many spins we arrive at the aforementioned version of the overdamped Landau-Lipshitz equation.