Special Session 15: Recent Advances on Population Models in Ecology and Epidemiology

The diffusive Lotka-Volterra competition model in fragmented patches I: Coexistence

Ananta Acharya
University of North Carolina Greensboro
USA
Co-Author(s):    S. Bandyopadhyay, J. Goddard II, A. Muthunayake & R. Shivaji
Abstract:
\noindent We study the positive solutions to the reaction diffusion model \begin{equation*} %\label{1.11} (*) \left\lbrace \begin{matrix} -\Delta u = \lambda u(1-u - b_1v);~\Omega\ -\Delta v = \lambda rv(1-v - b_2u) ;~\Omega\ \frac{\partial u}{\partial \eta}+\gamma_1 \sqrt{\lambda}u=0;~\partial\Omega\ \frac{\partial v}{\partial \eta}+ \gamma_2 \sqrt{\lambda}v=0;~\partial\Omega \end{matrix} \right. \end{equation*} \noindent which describes the steady states of two species $u$ and $v$ competing in a habitat $\Omega$. Here $b_1, b_2$ represent the strengths of competition, $\lambda$ represents a patch size measure, and $\gamma_1, \gamma_2$ are related to the hostility of the exterior domain. We analyze the positive solutions of (*) as the parameters $b_1, b_2$ and $\gamma_1, \gamma_2$ vary.