Special Session 89: Recent trends in mathematical fluid mechanics

Compressible magnetohydrodynamics driven by non-conservative boundary conditions

Agnieszka Swierczewska-Gwiazda
University of Warsaw
Poland
Co-Author(s):    Eduard Feireisl, Piotr Gwiazda, Young-Sam Kwon
Abstract:
We propose a new concept of weak solution to the equations of compressible magnetohydrodynamics driven by large boundary data. The system of the underlying field equations is solvable globally in time in the out of equilibrium regime characteristic for turbulence. The weak solutions comply with the weak--strong uniqueness principle; they coincide with the classical solution of the problem as long as the latter exists. The choice of constitutive relations is motivated by applications in stellar magnetoconvection.