Special Session 50: Nonlinear elliptic PDEs: analysis and computations

A generalized radial Brezis-Nirenberg problem

Soledad Benguria Andrews
University of Wisconsin-Madison
USA
Co-Author(s):    Rafael Benguria
Abstract:
\noindent Given $n\in (2,4),$ we study the existence, nonexistence and uniqueness of positive solutions $u \in H_0^1(0,R)$ of \begin{equation}\label{eq:BBgeneral} -u``(x)-(n-1)\dfrac{a`(x)}{a(x)}u`(x)= \lambda u(x) + u(x)^p, \end{equation} \noindent with boundary condition $u`(0) = u(R) = 0$, under rather general conditions on $a(x)$. Here, as in the original problem, $p=(n+2)/(n-2)$ is the critical Sobolev exponent. \bigskip \bigskip \noindent This is a joint work with Rafaael Benguria, PUC, Santiago, Chile.