Special Session 42: 

Persistence and spreading speeds of parabolic-elliptic Keller-Segel models in shifting environments

Shuwen Xue
Auburn University
USA
Co-Author(s):    Wenxian Shen
Abstract:
The current paper is concerned with the persistence and spreading speeds of the following Keller-Segel chemoattraction system in shifting environments, \begin{equation}\label{abstract-eq1} \begin{cases} u_t=u_{xx}-\chi(uv_x)_x +u(r(x-ct)-bu),\quad x\in\R\cr 0=v_{xx}- \nu v+\mu u,\quad x\in\R, \end{cases} \end{equation} where $\chi$, $b$, $\nu$, and $\mu$ are positive constants, { $c\in\R$ }, $r(x)$ is H\older continuous, bounded, $r^*=\sup_{x\in\R}r(x)>0$, $r(\pm \infty):=\lim_{x\to \pm\infty}r(x)$ exist, and $r(x)$ satisfies either $r(-\infty)