Special Session 76: 

On the uniqueness of bound state solutions of a semilinear equation with weights

Pilar Herreros
P. Universidad Catolica de Chile
Chile
Co-Author(s):    Carmen Cort\`azar and Marta Garc\`\ia-Huidobro
Abstract:
We consider radial solutions of a general elliptic equation involving a weighted Laplace operator. We establish the uniqueness of the radial bound state solutions to $$ \mbox{div}\big(\mathsf A\,\nabla v\big)+\mathsf B\,f(v)=0\,,\quad\lim_{|x|\to+\infty}v(x)=0,\quad x\in\mathbb R^n,\eqno{(P)} $$ $n>2$, where $\mathsf A$ and $\mathsf B$ are two positive, radial, smooth functions defined on $\mathbb R^n\setminus\{0\}$. We assume that the nonlinearity $f\in C(-c,c)$, $00$, is non positive and not identically 0 in $(0,b)$, positive in $(b,c)$, and is differentiable in $(0,c)$.