Special Session 60: 

Positive solutions for the fractional Laplacian with subcritical and critical nonlinearities

Silvia Frassu
University of Cagliari
Italy
Co-Author(s):    Antonio Iannizzotto
Abstract:
In this talk we consider a nonlinear Dirichlet problems driven by the fractional Laplacian. We prove the existence of two nontrivial solutions, exploiting a two nontrivial critical points theorem for differentiable functionals. Moreover, we study such Dirichlet problems when the nonlinearity has a critical growth, and we prove the existence of one positive weak solution, applying a local minimum theorem for energy functionals that satisfy a suitable type of Palais Smale condition. This is a joint work with Antonio Iannizzotto. \bibitem{label} G. Bonanno, G. D`Agu\`{i} and D. O`Regan, A local minimum theorem and critical nonlinearities, {\em Analele Universitatii ``Ovidius`` Constanta-Seria Matematica} \textbf{24} (2016), 67--86. \bibitem{label} G. Bonanno, G. D`Agu\`{i}, Two non-zero solutions for elliptic Dirichlet problems, {\em Zeitschrift fuer Analysis und Ihre Anwendungen} \textbf{35} (2016), 449--465. \bibitem{label} S. Frassu, A. Iannizzotto, Positive solutions for the fractional Laplacian with subcritical and critical nonlinearities, preprint.