Special Session 155: 

Unconditional energy stability analysis of 2-order implicit-explicit LDG method for the CH equation

Huailing Song
Hunan University
Peoples Rep of China
Co-Author(s):    Chi-Wang Shu
Abstract:
In this article, we present a second-order in time implicit-explicit (IMEX) local discontinuous Galerkin (LDG) method for computing the Cahn-Hilliard equation, which describes the phase separation phenomenon. It is well-known that the Cahn-Hilliard equation has a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Cahn-Hilliard system modeled by the IMEX LDG method can inherit the nonlinear stability of the continuous model. We apply a stabilization technique and prove unconditional energy stability of our scheme. Numerical experiments are performed to validate the analysis. Computational efficiency can be significantly enhanced by using this IMEX LDG method with a large time step.