Special Session 10: 

Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion

Yuxiang Li
Southeast University
Peoples Rep of China
Co-Author(s):    Tao weirun
Abstract:
In this talk we present an incompressible chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion \begin{eqnarray}\nonumber \left\{\begin{array}{lll} \medskip n_t+u\cdot\nabla n=\nabla\cdot(|\nabla n|^{p-2}\nabla n)-\nabla\cdot(n\chi(c)\nabla c),&{} x\in\Omega,\ t>0,\ \medskip c_t+u\cdot\nabla c=\Delta c-nf(c),&{} x\in\Omega,\ t>0,\ \medskip u_t+\kappa(u\cdot\nabla) u=\Delta u+\nabla P+n\nabla\Phi,&{} x\in\Omega,\ t>0,\ \medskip \nabla\cdot u=0,&{} x\in\Omega,\ t>0 \end{array}\right. \end{eqnarray} under homogeneous boundary conditions of Neumann type for $n$ and $c$, and of Dirichlet type for $u$ in a bounded convex domain $\Omega\subset \mathbb{R}^3$ with smooth boundary. Here, $\Phi\in W^{1,\infty}(\Omega)$, $0\frac{32}{15}$ and under appropriate structural assumptions on $f$ and $\chi$, for all sufficiently smooth initial data $(n_0,c_0,u_0)$ the model possesses at least one global weak solution.