Abstract: |
Consider a non-cooperative game in infinite time horizon, with linear dynamics and exponentially
discounted quadratic costs. Assuming that the state space is one-dimensional, we prove that the Nash equilibrium solution in feedback form is stable under nonlinear perturbations. The analysis shows that, in a generic setting, the linear-quadratic game can have either one or infinitely many feedback equilibrium solutions. For each of these, a nearby solution of the perturbed nonlinear game can be constructed. |
|