Special Session 13: 

Limit sets in topologically transitive cylinder transformations

Artur Siemaszko
University of Warmia and Mazury in Olsztyn
Poland
Co-Author(s):    Jan Kwiatkowski
Abstract:
Let $X$ be a compact metric monothetic group and $T:X\longrightarrow X$ be a homeomorphism of $X$. Let $f:X\longrightarrow\mathbb{R}$ be a continuous function (called \emph{a cocycle}). By a \emph{cylinder transformation} we mean a homeomorphism. $T_f:X\times\mathbb{R}\longrightarrow X\times\mathbb{R}$ (or rather a $\mathbb{Z}$--action generated by it) given by the formula $$T_f(x,r)=(Tx,f(x)+r).$$ In \cite{P} H. Poincar\`{e} addressed the problem of what types of orbits may coexist in such a system. We give a very brief history of the problem and describe some recent results. \bigskip \begin{thebibliography}{99} \small \bibitem{P} H. Poincar\`{e}, \emph{M\`{e}moire sur les courbes d\`{e}finies par une \`{e}quation diff\`{e}rentielle}, 1882. \end{thebibliography}