Special Session 106: 

Existence and concentration of positive solutions for coupled Schr\{o}dinger equations

Rong Cheng
Nanjing University of Information Science and Technology
Peoples Rep of China
Co-Author(s):    
Abstract:
\documentclass[10pt,twoside]{article}\makeatother \usepackage{amsfonts,amsmath,amssymb} \numberwithin{equation}{section} %%ADD DEINITIONS HERE IF ANY%% \newtheorem{theo}{Theorem}[section] \newtheorem{lem}{Lemma}[section] \newtheorem{col}{Corollary}[section] \newtheorem{rem}{Remark}[section] \newtheorem{defn}{Definition}[section] \newcommand{\lbl}[1]{\label{#1}} \newtheorem{prop}{Proposition}[section] \newtheorem{exa}{Example}[section] \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} \makeatletter \oddsidemargin.4in \evensidemargin \oddsidemargin \marginparwidth2.5375in \makeatother \textwidth 5.5in \topmargin.0in \textheight8.5in \pagestyle{myheadings} %%Author`s initials should precede their names,e.g. W.J. Jones%% %%Upper and Lower Case Should Be Used for Short Title of Paper%% \begin{document} \thispagestyle{empty} \setcounter{page}{1} \begin{center} {\bf Abstract} \end{center} In this paper, we study the existence and concentration of positive solution of a class of coupled Schr\odinger equations. We admit that the potentials may not be non-negative and suppose that the intersection of the sets has positive Lebesgue measure. By studying the modified functional of the associated functional carefully, we establish the existence of positive least energy solutions for the coupled Schr\odinger system. Moreover, we prove the concentration phenomenon of the positive solution when the parameter goes to infinity.\ \vfill \end{document}