Special Session 126: 

Measures of maximal entropy for suspension flows over the full shift

Tamara Kucherenko
The City College of New York
USA
Co-Author(s):    Dan Thompson
Abstract:
We consider suspension flows with continuous roof function over the full shift on a finite alphabet. For any positive entropy subshift of finite type Y, we show there exists a roof function such that the measure(s) of maximal entropy for the suspension flow over the full shift are exactly the lifts of the measure(s) of maximal entropy for Y. In the case when Y is transitive, this gives a unique measure of maximal entropy for the flow which is not fully supported. If Y has more than one transitive component, all with the same entropy, this gives explicit examples of suspension flows over the full shift with multiple measures of maximal entropy. This contrasts with the case of a H\older continuous roof function where it is well known the measure of maximal entropy is unique and fully supported.