Contents |
We study the effects of additive noise on traveling pulse solutions in spatially extended neural fields with linear adaptation. Neural fields are evolution equations with an integral term characterizing synaptic interactions between neurons at different spatial locations of the network. We introduce an auxiliary variable to model the effects of local negative feedback and consider random fluctuations by modeling the system as a set of spatially extended Langevin equations whose noise term is a $Q$-Wiener process. Due to the translation invariance of the network, neural fields can support a continuum of spatially localized bump solutions that can be destabilized by increasing the strength of the adaptation, giving rise to traveling pulse solutions. Near this criticality, we derive a stochastic amplitude equation describing the dynamics of these bifurcating pulses when the noise and the deterministic instability are of comparable magnitude. Away from this bifurcation, we investigate the effects of additive noise on the propagation of traveling pulses and demonstrate that noise induces wandering of traveling pulses. Our results are complemented with numerical simulations. |
|