Display Abstract

Title Multiplicity results for Neumann-type differential inclusion problems with variable exponent

Name Antonia Chinni'
Country Italy
Email achinni@unime.it
Co-Author(s)
Submit Time 2014-02-24 00:24:10
Session
Special Session 41: Topological and variational methods for multivalued differential equations
Contents
We study the existence of at least three distinct solutions for the following Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian: \begin{equation}\tag{${\it N}_{\lambda}$}\label{eq:dir} \left\{\begin{array}{l} -\Delta _{p(x)}u + a(x) |u|^{p(x)-2}u\in \lambda\partial F(x,u)\;\; {\rm in}\;\;\Omega\\ \\ \displaystyle\frac{\partial u}{\partial \nu}=0\;\; {\rm on} \; \partial\Omega \end{array} \right. \end{equation} where $\Omega\subset {{\rm l}\kern-.17em{\rm R}} ^{N}$ is an open bounded domain with smooth boundary $\partial\Omega$, $a$ is a suitable function belonging to $L^{\infty}(\Omega)$, $\Delta _{p(x)}u :={\rm div} (|\nabla u|^{p(x)-2}\nabla u)$ denotes the $p(x)$-Laplace operator related to a convenient function $p$ of $C(\bar{\Omega})$, $\nu$ is the outward unit normal to $\partial\Omega$, $\lambda$ is a positive parameter and $\partial F(x,\xi)$ is the generalized gradient with respect to $\xi$ of a fixed function $F$ defined on $\Omega\times{{\rm l}\kern-.17em{\rm R}}$. The results are obtained by using a multiple critical points theorem for locally Lipschitz continuous functionals.