Display Abstract

Title Global existence in time of a model of chemotaxis

Name Akisato Kubo
Country Japan
Email akikubo@fujita-hu.ac.jp
Co-Author(s) Jose Ignacio Tello
Submit Time 2014-02-08 20:33:47
Session
Special Session 115: Mathematical models of chemotaxis
Contents
We deal with the following chemotaxis system with non-diffusive chemical gradients arising from mathematical biology and medicine for $u:=u(x,t)$ and $v:=v(x,t)$ $\frac{\partial u}{\partial t}- \Delta u=- \mbox{div}\left(\chi u \nabla v\right)+ \lambda u(1-u-v), (x,t) \in \Omega \times (0,T) $ $\frac{\partial v}{\partial t}+ h(v)=u,$ where $\Omega$ is a bounded domain in $R^n$ with the smooth boundary $\partial \Omega$, $\chi$ and $\lambda $ are positive constants. We consider a intiial boundary value problem of the above system for the outer unit normal vector $n $ $\ \ \ \ \frac{\partial u }{\partial n}= \frac{\partial v }{\partial n} =0 \qquad \mbox{in} \ \ \partial\Omega \times (0,T)$ $ \ \ \ \ u(x,0)=u_0(x), v(x,0)=v_0(x).$ We will discuss existence of global solutions in time and asymptotic behavior of solutions.