Display Abstract

Title On a semilinear equation involving the curl-curl operator

Name Thomas Bartsch
Country Germany
Email Thomas.Bartsch@math.uni-giessen.de
Co-Author(s) Jaroslaw Mederski
Submit Time 2014-02-07 12:23:34
Session
Special Session 38: Recent trends in nonlinear Schrodinger systems
Contents
We present recent results on finite energy solutions $A:\Omega\to\mathbb{R}^3$ of the equation $$ \nabla\times(\nabla\times A) + V(x) A = \partial_Af(x,A) $$ on a smooth bounded domain $\Omega$ of $\mathbb{R}^3$ with boundary condition $n\times A=0$ on $\partial\Omega$. Here "$\nabla\times$" denotes the curl operator, $V\in L^\infty_{loc}(\Omega)$ is bounded below, and $f: \Omega\times\mathbb{R}^3\to\mathbb{R}$ is a superlinear and subcritical nonlinearity; $n$ is the exterior normal to the boundary.