Display Abstract

Title Abstract Integrodifferential Equations in Interpolation Spaces

Name Arlucio Viana
Country Brazil
Email arlucioviana@gmail.com
Co-Author(s) Bruno de Andrade
Submit Time 2014-02-05 15:19:32
Session
Special Session 125: Abstract Differential Equations and Related Topics
Contents
We consider the Cauchy problem \begin{eqnarray}\label{te0} u'=Au+\int_{0}^{t}g(t-s,u(s))ds+f(t,u(t)),\ t>0,\\ u(0)=u_0\in X_1=D(A),\label{ic0} \end{eqnarray} where $A:D(A)\subset X_0\longrightarrow X_0$ is a linear operator such that $-A$ is a sectorial operator, $X_0$ is a Banach space, and $g$ and $f$ are functions mapping $X_1$ into $X_\alpha$, satisfying certain conditions. We purpose to present a result on existence and uniqueness of mild solutions for the above problem, when $\alpha\in(0,1]$.