Display Abstract

Title Periodic solutions of Lipschitz differential systems via higher order averaging method

Name Douglas D Novaes
Country Brazil
Email ddnovaes@gmail.com
Co-Author(s) Jaume Llibre and Marco A. Teixeira
Submit Time 2014-01-31 09:22:26
Session
Special Session 103: Periodic solutions for dynamical systems
Contents
We deal with nonlinear differential systems of the form \begin{equation*} x'(t)=\sum_{i=0}^k\varepsilon^i F_i(t,x)+\varepsilon^{k+1} R(t,x,\varepsilon), \end{equation*} where $F_i:\mathbb{R}\times D\rightarrow\mathbb{R}^n$ for $i=0,1,\cdots,k$, and $R:\mathbb{R}\times D\times(-\varepsilon_0,\varepsilon_0)\rightarrow\mathbb{R}^n$ are continuous functions, $T$--periodic in the first variable and Lipschitz in the second variable, being $D$ an open subset of $\mathbb{R}^n$, and $\varepsilon$ a small parameter. For such differential systems, which do not need to be of class $\mathcal{C}^1$, under convenient assumptions we extend the averaging theory for computing their periodic solutions to $k$--th order in $\varepsilon$. The main tool used is the Brouwer degree theory for finite dimensional spaces.