Display Abstract

Title On the effect of equivalent constraints on a maximizing problem associated with the Sobolev embedding in ${\Bbb R}^N$

Name Michinori Ishiwata
Country Japan
Email ishiwata@sss.fukushima-u.ac.jp
Co-Author(s)
Submit Time 2014-05-02 12:45:06
Session
Special Session 127: Functional Inequalities and Variational Problems
Contents
In this talk, we consider the attainability of a maximizing problem \begin{equation*} D:=\sup_{\|u\|_{H^{1,N}_\gamma}=1}\left(\|u\|_N^N+\alpha\|u\|_p^p\right), \end{equation*} where $N\geq 2$, $N0$ and $\|u\|_{H^{1,N}_\gamma}=\left(\|u\|_N^\gamma+\|\nabla u\|_N^\gamma\right)^{\frac{1}{\gamma}}$. The existence of a maximizer for $D$ is closely related to the exponent $\gamma$. In fact, we show that the value \begin{equation*} \alpha=\alpha_*:=\inf_{\|u\|_{H^{1,N}_\gamma}=1}\left(\frac{1-\|u\|_N^N}{\|u\|_p^p}\right) \end{equation*} is a threshold in terms of the attainability of $D$.