Display Abstract

Title EXACT CONTROLLABILITY OF EVOLUTION EQUATIONS BY SMOOTH CONTROLS AND APPLICATIONS

Name Benzion Shklyar
Country Israel
Email shk_b@hit.ac.il
Co-Author(s)
Submit Time 2014-04-03 15:49:44
Session
Special Session 50: Evolution equations and inclusions with applications to control, mathematical modeling and mechanics
Contents
Let $V\subset X\subset V^{\prime }$ are Hilbert spaces with continuous dense injections (see more details in [3] and references therein). %\cite{Tucsnak&Weiss} Consider the control evolution equation [1] %\cite{Hille&Philips} %\begin{equation} \begin{equation*} \dot{x}\left( t\right) =Ax\left( t\right) +bu\left( t\right) ,x\left( 0\right) =x^{0},0\leq t0$ there exists a square integrable control $u\left( \cdot %\right) \in L_{2}(\left[ 0,t_{1}\right],\mathbb{R}^r)$ such that a mild %solution $x\left( t,x^{0},u\left( \cdot \right) \right) $ of equation (\ref% %{1}) with initial condition $x^{0}$, generated by a control $u\left( \cdot %\right) $, satisfies the condition $\left\Vert x\left( t,x^{0},u\left( \cdot %\right) \right) \right\Vert