Display Abstract

Title Energy from spectral triples on the Sierpinski gasket

Name Daniele Guido
Country Italy
Email guido@mat.uniroma2.it
Co-Author(s) F.Cipriani, T.Isola, J-L.Sauvageot
Submit Time 2014-03-31 12:49:15
Session
Special Session 123: Fractals
Contents
We construct a family of spectral triples for the Sierpi\'nski Gasket $K$. For suitable values of the parameters, we determine the dimensional spectrum and recover the Hausdorff measure of $K$ in terms of the residue of the volume functional $a\to$ tr$(a\,|D|^{-s})$ at its abscissa of convergence $d_D$, which coincides with the Hausdorff dimension $d_H$ of the fractal. We determine the associated Connes' distance showing that it is bi-Lipschitz equivalent to the distance on $K$ induced by the Euclidean metric of the plane, and show that the pairing of the associated Fredholm module with (odd) $K$-theory is non-trivial. When the parameters belong to a suitable range, the abscissa of convergence $\delta_D$ of the energy functional $a\to$ tr$(|D|^{-s/2}|[D,a]|^2\,|D|^{-s/2})$ takes the value $d_E=\frac{\log(12/5)}{\log 2}$, which we call {\it energy dimension}, and the corresponding residue gives the standard Dirichlet form on $K$.