Display Abstract

Title Some fully nonlinear parabolic equation and unidirectional evolution

Name Goro Akagi
Country Japan
Email akagi@port.kobe-u.ac.jp
Co-Author(s) Goro Akagi
Submit Time 2014-03-30 23:55:26
Session
Special Session 86: Nonlinear evolution equations and related topics
Contents
In this talk, we discuss the local (in time) solvability and the finite time blow-up of positive solutions for the Cauchy-Neumann problem in a bounded domain $\Omega$ of $\mathbb R^N$ for a fully nonlinear parabolic equation involving a "positive part function" $(x)_+ := x \vee 0$ for $x \in \mathbb R$, $$ \partial_t u = g(u) \left( \lambda \Delta u + u \right)_+ \quad \mbox{ in } \Omega \times (0,+\infty), $$ where $g(u)$ is a positive function and $\lambda > 0$.