Display Abstract

Title Uniqueness of the limit for an asymptotically autonomous semilinear equation on $\mathbb R^N$

Name Pilar Herreros
Country Chile
Email pherrero@mat.puc.cl
Co-Author(s) Carmen Cort\'azar and Marta Garc\'ia-Huidobro
Submit Time 2014-03-30 13:50:08
Session
Special Session 40: Qualitative aspects of linear and nonlinear elliptic and parabolic problems
Contents
We consider a parabolic equation of the form \begin{equation*} \begin{gathered} u_t=\Delta u +f(u)+h(x,t),\quad (x,t)\in\mathbb R^N\times (0,\infty)\\ u(x,t)\ge 0\quad\mbox{for all }(x,t)\in\mathbb R^N\times (0,\infty). \end{gathered} \end{equation*} where $f\in C^1(\mathbb R)$ is such that $f(0)=0$, $f'(0)$ negative and $h$ is a suitable function on $\mathbb R^N\times (0,\infty)$. We show that under certain conditions, each globally defined and nonnegative bounded solution $u$ converges to a single steady state.