Display Abstract

Title QUALITATIVE RESULTS FOR PARABOLIC $P-$LAPLACIAN EQUATIONS UNDER DYNAMICAL BOUNDARY CONDITIONS

Name Mabel M Cuesta
Country France
Email cuesta@lmpa.univ-littoral.fr
Co-Author(s) J. von Below and G. Pincet
Submit Time 2014-03-30 09:39:25
Session
Special Session 18: Nonlinear elliptic and parabolic problems
Contents
We discuss global existence results and the occurrence of blow up phenomena for the nonlinear parabolic problem involving the $p$--Laplace operator of the form $$ \left\{\begin{array}{ll}\label{pbm1} \partial_t u=\Delta_p u+F(t,x,u)&\mbox{in}\ \Omega\ \mbox{ for }\ t>0,\\ \sigma \partial_t u+|\nabla u|^{p-2}\partial_\nu u=0&\mbox{on}\ \partial\Omega\ \mbox{ for }\ t>0,\\ u(0,\cdot)=u_0 &\mbox{in}\ \overline{\Omega},\\ \end{array}\right. $$ where $\Omega$ is a bounded domain of $\R^N$ with Lipschitz boundary, and where $$\Delta_p u:=\div\, \Big(|\nabla u|^{p-2}\nabla u\Big)$$ is the $p$--\textit{Laplacian} defined for any $u\in W^{1,p}(\Omega)$ and $p>1$. As for the \textit{dynamical} time lateral boundary condition $\sigma \partial_t u+|\nabla u|^{p-2}\partial_\nu u=0$ the coefficient $\sigma$ is assumed to be a nonnegative constant. The parameter dependent non linearity $F(\cdot,\cdot,u)=\lambda|u|^{p-2}u$ will be of particular interest, as well as the case $F(\cdot,\cdot,u)=\lambda|u|^{q-2}u$ with $q>p>2$. The results presented here stem from a joint work with Joachim von Below and Ga\"elle Pincet Mailly.