Contents |
We study the critical problem
\begin{equation}
\left\{
\begin{array}{ll}
\Delta ^{2}u=u^{\frac{N+4}{N-4} } & \mbox{ in }\Omega\setminus \overline{B(\xi_0,\varepsilon) },\\
u>0&\mbox{ in }\Omega\setminus \overline{B(\xi_0,\varepsilon) },\\
u=\Delta u=0 & \mbox{ on }\partial (\Omega \setminus \overline{B(\xi_0,\varepsilon) }),
\end{array}
\right. \tag{P$_\varepsilon$}
\end{equation}
where $\Omega$ is an open bounded domain in $\mathbb{R}^N$, $N\ge5$, $\xi_0\in\Omega$ and $B(\xi_0,\varepsilon)$ is the ball centered at $\xi_0$ with radius $\varepsilon>0$ small enough. We construct solutions of (P$_\varepsilon$) blowing-up at $\xi_0$ as $\varepsilon\rightarrow 0$. |
|