Display Abstract

Title A Paneitz-type problem in pierced domain

Name Salomon Alarcon
Country Chile
Email salomon.alarcon@usm.cl
Co-Author(s) Angela Pistoia
Submit Time 2014-03-28 11:02:37
Session
Special Session 120: Linear and Nonlinear fourth order PDE's
Contents
We study the critical problem \begin{equation} \left\{ \begin{array}{ll} \Delta ^{2}u=u^{\frac{N+4}{N-4} } & \mbox{ in }\Omega\setminus \overline{B(\xi_0,\varepsilon) },\\ u>0&\mbox{ in }\Omega\setminus \overline{B(\xi_0,\varepsilon) },\\ u=\Delta u=0 & \mbox{ on }\partial (\Omega \setminus \overline{B(\xi_0,\varepsilon) }), \end{array} \right. \tag{P$_\varepsilon$} \end{equation} where $\Omega$ is an open bounded domain in $\mathbb{R}^N$, $N\ge5$, $\xi_0\in\Omega$ and $B(\xi_0,\varepsilon)$ is the ball centered at $\xi_0$ with radius $\varepsilon>0$ small enough. We construct solutions of (P$_\varepsilon$) blowing-up at $\xi_0$ as $\varepsilon\rightarrow 0$.