Display Abstract

Title Analytic smoothing effect for a system of nonlinear Schr\"odinger equations.

Name Gaku Hoshino
Country Japan
Email gaku-hoshino@ruri.waseda.jp
Co-Author(s) Tohru Ozawa
Submit Time 2014-03-19 04:57:51
Session
Special Session 86: Nonlinear evolution equations and related topics
Contents
We consider the Cauchy problem for a system of nonlinear Schr\"odinger equations of the form \begin{align*} \begin{cases} i\partial_t u+\frac{1}{2m}\Delta u=\lambda v \overline{u},\\ i\partial_t v+\frac{1}{2M}\Delta v=\mu u^2. \end{cases} \end{align*} In this study, we consider the analytic smoothing property for the above system under the mass resonance condition $M = 2m$ for suffciently small Cauchy data with exponential decay in space dimensions $n\geq3.$ We prove the global existence in framework of the critical Sobolev space $\dot{H}^{n/2-2}$ for $n\geq4$ and $1/2$ order Sobolev type space defined by the generator of Galilei transform $x+i\frac{t}{m}\nabla$ for $n=3.$