Display Abstract

Title A mathematical model of systemic inhibition of angiogenesis in metastatic development

Name Sebastien Benzekry
Country France
Email benzekry@phare.normalesup.org
Co-Author(s) Alberto Gandolfi, Philip Hahnfeldt
Submit Time 2014-03-16 06:29:49
Session
Special Session 85: Transport processes in biology: Modelling and analysis
Contents
We present a mathematical model describing the time development of a population of tumors subject to mutual angiogenic inhibitory signaling. Based on biophysical derivations, it describes organism-scale population dynamics under the influence of three processes: birth (dissemination of secondary tumors), growth and inhibition (through angiogenesis). The resulting model is a nonlinear partial differential transport equation with nonlocal boundary condition. The nonlinearity stands in the velocity through a nonlocal quantity of the model (the total metastatic volume). The asymptotic behavior of the model is numerically investigated and reveals interesting dynamics ranging from convergence to a steady state to bounded non-periodic or periodic behaviors, possibly with complex repeated patterns. Numerical simulations are performed with the intent to theoretically study the relative impact of potentiation or impairment of each process of the birth/growth/inhibition balance. Biological insights on possible implications for the phenomenon of ``cancer without disease" are also discussed.