Display Abstract

Title A priori estimates and initial trace for a Hamilton-Jacobi equation with gradient absorption terms

Name MARIE-FRANCOISE M BIDAUT-VERON
Country France
Email veronmf@univ-tours.fr
Co-Author(s)
Submit Time 2014-03-12 11:40:05
Session
Special Session 40: Qualitative aspects of linear and nonlinear elliptic and parabolic problems
Contents
Here we consider the nonnegative solutions of the parabolic Hamilton-Jacobi equation \[ u_{t}-\Delta u+\left\vert \nabla u\right\vert ^{q}=0 \] in $\Omega\times\left( 0,T\right) $ where $\Omega=\mathbb{R}^{N}$ or $\Omega$ is a bounded domain of $\mathbb{R}^{N},$ $q>0.$ We give new a priori local or global estimates for solutions, without conditions as $\left\vert x\right\vert \rightarrow\infty$ or $x\rightarrow \partial\Omega,$ and corresponding existence results with initial data measure. We study the existence of an initial trace. We show that all the solutions admit a trace as a Borel measure $(S,u_{0}):$ there exist a set $\mathcal{S}% \subset\Omega$ such that $\mathcal{R}=\Omega\backslash\mathcal{S}$ is open, and a (possibly unbounded) measure $u_{0}\in\mathcal{M}^{+}(\mathcal{R})$, such that \[ \lim_{t\rightarrow0}\int_{\mathcal{R}}u(.,t)\psi=\int_{\mathcal{R}}\psi d\mu_{0},\qquad\forall\psi\in C_{c}^{0}(\mathcal{R}), \] \medskip\ \[ \lim_{t\rightarrow0}\int_{\mathcal{U\cap S}}u(.,t)dx=\infty,\qquad \forall\mathcal{U}\text{ open}\subset\Omega,\text{s.th. }\mathcal{U\cap S\neq\emptyset}. \] We give more generally existence results of solutions with such a trace, according to assumptions on $u_{0},$ and give their behaviour as $\left\vert x\right\vert \rightarrow\infty.$ In particular we construct a solution with trace $(\mathbb{R}^{N+},0).$ When $q\le1,$ we show that $\mathcal{S}$ is empty.