Display Abstract

Title A matrix-based framework to structure-preserving discretization of continuum theories

Name Dmitry Pavlov
Country England
Email dmitry.pavlov@icloud.com
Co-Author(s)
Submit Time 2014-03-10 13:42:30
Session
Special Session 105: Geometric mechanics
Contents
I will describe a framework for constructing discrete models of infinite-dimensional systems which preserve underlying geometry. These models lead to numerical methods that capture the dynamics of the system without energy or momenta loss and preserve momentum maps in discrete realm. This work starts with developing a matrix-based exterior calculus. This calculus extends the classical Discrete Exterior Calculus providing us with the notions of discrete Lie derivative, interior product etc., while preserving many properties of their continuous counterparts. This matrix-based exterior calculus has been used to create structure-preserving discretizations of various systems, such as fluid dynamics, magnetohydrodynamics, complex fluids etc. I will show how it can be used to construct a variational integrator for the Euler and EPDiff equations. I will also describe how these methods can be extended to create a new model of discrete differential geometry. This approach uses ideas of noncommutative geometry and can lead to a structure-preserving discretization of general relativity.