Display Abstract

Title A nonlocal two phase Stefan problem

Name Silvia Sastre-Gomez
Country Spain
Email silviasastre@mat.ucm.es
Co-Author(s) Emmanuel Chasseigne and Silvia Sastre-Gomez
Submit Time 2014-02-28 12:15:51
Session
Special Session 54: Nonlocal fractional problems and related topics
Contents
We study a nonlocal version of the two-phase Stefan problem, which models a phase transition problem between two distinct phases evolving to distinct heat equations. Mathematically speaking, this consists in deriving a theory for sign-changing solutions of the equation, $u_t=J\ast v -v $, $v=\Gamma(u)$, where the monotone graph is given by $\Gamma(s)={\mathop{\rm sign}}(s)(|s|-1)_+$. We give general results of existence, uniqueness and comparison, in the spirit of [2]. Then we focus on the study of the asymptotic behaviour for sign-changing solutions, which present challenging difficulties due to the non-monotone evolution of each phase.\\ References:\\ \noindent $[1]$~ Baiocchi, C.,Su un problema di frontiera libera conneso a questioni di idraulica. Ann. Mat. Pura. Appl. (4) 92 (1972), 107-127. \\ $[2]$~ Br\"andle, C.; Chasseigne, E.; Quir\'os, F., Phase transition with mid-range interactions: a nonlocal one-phase Stefan model, SIAM J. Math. Anal., Vol. 44, No. 4, (2012) 3071--3100.\\ $[3]$~ Meirmanov, A. M. ``The Stefan problem''. Walter de Gruyter, Berlin, 1992.\\ $[4]$~ Stefan, J., \"Uber einige Probleme der Theorie der W\"armeleitung. Sitzungsber, Wien, Akad. Mat. Natur. 98 (1889), 473-484; see also pp. 614-634; 965-983; 1418-1442.