Display Abstract

Title Some well-posedness and analytic regularity results for weakly hyperbolic problems

Name Giovanni Taglialatela
Country Italy
Email giovanni.taglialatela@uniba.it
Co-Author(s)
Submit Time 2014-02-28 08:52:52
Session
Special Session 90: Analysis of hyperbolic PDEs
Contents
According to Jannelli (Comm. P.D.E. 1989) and D'Ancona Spagnolo (Boll. U.M.I. 1998), we say that an $N\times N$ matrix $A$ admits a quasisymmetrizer if there exists a family $\{Q_\varepsilon\}_{0\lt\varepsilon\le1}$ of positive definite matrices such that \begin{eqnarray*} 1) & & (Q_\varepsilon u,u) \ge {}^\exists C \, \varepsilon^{N-1} \, \|u\|^2 \\ 2) & & \bigl|(R_\varepsilon u , v)\bigr| \le {}^\exists C \, \varepsilon \, (Q_\varepsilon u,u)^{1/2} \, (Q_\varepsilon v,v)^{1/2} \end{eqnarray*} where $R_\varepsilon := Q_\varepsilon A - (Q_\varepsilon A)^*$. In this talk, we recall how to construct a quasisymmetrizer for some classes of matrices and we illustrate how to use it in order to derive apriori estimates for hyperbolic systems.