Display Abstract

Title Semi-group theory for the Stokes operator with Navier-type boundary conditions on $\boldsymbol{L}^{p}$-spaces

Name Cherif Amrouche
Country France
Email cherif.amrouche@univ-pau.fr
Co-Author(s) H. Al Baba, M. Escobedo, N. Seloula
Submit Time 2014-02-28 05:22:37
Session
Special Session 78: The Navier-Stokes equations and related problems
Contents
The aim of this work is to study the analyticity of the Stokes operator with Navier-type boundary conditions on $\boldsymbol{L}^{p}$-spaces in order to get strong, weak and very weak solutions to the following evolution Stokes problem: \begin{equation}\label{lens} \left\{ \begin{array}{cccc} &\frac{\partial\boldsymbol{u}}{\partial t} - \Delta \boldsymbol{u }\,+\,\nabla\pi=\boldsymbol{f},\quad \mathrm{div}\,\boldsymbol{u}= 0 & \textrm{in} &\Omega\times (0,T), \\ &\boldsymbol{u}\cdot\boldsymbol{n}=0,\qquad \boldsymbol{\mathrm{curl}}\,\boldsymbol{u}\times \boldsymbol{n} = \boldsymbol{0}, &\textrm{on}&\Gamma\times (0,T),\\ &\boldsymbol{u}(0)=\boldsymbol{u}_{0}& \textrm{in} & \Omega. \end{array} \right. \end{equation} %where the unkowns $\boldsymbol{u}$ and $\pi$ stand respectively for the velocity field and the pressure of a fluid occupying a domain $\Omega$. In this work we prove that the Stokes operator with Navier-type boundary conditions generates a bounded analytic semi-group on the space $$ \boldsymbol{L}^{p}_{\sigma,T}(\Omega) =\,\big\{\boldsymbol{v}\in\boldsymbol{L}^{p}(\Omega);\,\,\,\textrm{div}\,\boldsymbol{v} = 0\,\, \mathrm {in}\, \Omega \quad\mathrm{and}\quad \boldsymbol{v}\cdot\boldsymbol{n}\,= 0 \, \, \mathrm{on}\, \Gamma \big\}. $$ The idea is to study the resolvent of the Stokes operator: \begin{equation}\label{*} \left\{ \begin{array}{r@{~}c@{~}l} \lambda \boldsymbol{u} - \Delta \boldsymbol{u}\,+\,\nabla\pi = \boldsymbol{f}, &&\mathrm{div}\,\boldsymbol{u} = 0 \,\,\, \qquad\qquad \mathrm{in} \,\,\, \Omega, \\ \boldsymbol{u}\cdot \boldsymbol{n} = 0, && \boldsymbol{\mathrm{curl}}\,\boldsymbol{u}\times\boldsymbol{n}=\boldsymbol{0}\qquad \mathrm{on}\,\,\, \Gamma, \end{array} \right. \end{equation} where $\lambda\in\mathbb{C}^{\ast}$ with $\mathrm{Re}\,\lambda\geq 0$. We prove the existence of weak, strong and very weak solutions to Problem (\ref{*}) satisfying the following resolvent estimate \begin{equation}\label{**} \Vert\boldsymbol{u}\Vert_{\boldsymbol{L}^{p}(\Omega)}\,\leq\, \frac{C(\Omega,p)}{\vert\lambda\vert} \,\Vert\boldsymbol{f}\Vert_{\boldsymbol{L}^{p}(\Omega)}. \end{equation}