Display Abstract

Title On the existence of boundary blow-up solutions for a general class of quasilinear elliptic systems

Name Paul Sauvy
Country France
Email paul.sauvy@ut-capitole.fr
Co-Author(s) Rym Chemmam, Sonia Ben Othman
Submit Time 2014-01-06 11:02:26
Session
Special Session 9: Dissipative systems and applications
Contents
In this talk, we investigate the following type of quasilinear elliptic system $({\rm P})$ with explosive boundary conditions on a smooth and bounded domain : $$\Delta_p u=f_1(x,u,v)\quad\text{in }\Omega\, ;\quad u|_{\partial\Omega}=+\infty,\quad u>0\quad\text{in }\Omega,$$ $$\Delta_q v=f_2(x,u,v)\quad\text{in }\Omega\, ;\quad v|_{\partial\Omega}=+\infty,\quad v>0\quad\text{in }\Omega.$$ Under suitable conditions on $f_1$ and $f_2$, we first give a general result relating the existence of large solutions to $({\rm P})$ to the existence of a sub and supersolutions pair to $({\rm P})$. Next, we give some applications considering particular systems arising in Biology.