Display Abstract

Title Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces

Name Xinru Cao
Country Germany
Email caoxinru@gmail.com
Co-Author(s)
Submit Time 2014-02-28 03:53:03
Session
Special Session 115: Mathematical models of chemotaxis
Contents
The fully parabolic Keller-Segel system \begin{equation} \left\{ \begin{array}{llc} u_t=\Delta u-\nabla\cdot(u\nabla v), &(x,t)\in \Omega\times (0,T),\\ v_t=\Delta v-v+u, &(x,t)\in\Omega\times (0,T),\\ \end{array} \right. \end{equation} is considered under Neumann boundary conditions in a bounded domain $\Omega\subset\mathbb{R}^n$ with smooth boundary, where $n\ge 2$. We derive a smallness condition on the initial data in optimal Lebesgue spaces which ensure global boundedness and large time convergence.