Display Abstract

Title Normalized solutions for nonlinear Schrodinger sytems

Name Louis Jeanjean
Country France
Email louis.jeanjean@univ-fcomte.fr
Co-Author(s) T. Bartsch
Submit Time 2014-02-28 03:04:07
Session
Special Session 38: Recent trends in nonlinear Schrodinger systems
Contents
We consider the existence of solutions in $H^1(R^N) \times H^1(R^N)$ for systems of the form \begin{equation} \left\{ \begin{array}{ll} - \Delta u_1 - \lambda_1 u_1 = \mu_1 |u_1|^{p_1 -2}u_1 + r_1 \beta |u_1|^{r_1-2}|u_2|^{r_2}u_1 \\ - \Delta u_2 - \lambda_2 u_2 = \mu_2 |u_2|^{p_2 -2}u_2 + r_2 \beta |u_1|^{r_1}|u_2|^{r_2 -2}u_2. \end{array} \right. \end{equation} Here $N \geq 1,$ $ \mu_1, \mu_2, r_1, r_2$ are given positive constants and $\beta \in R$. For $a_1 >0, a_2 >0$ given, we look for solutions satisfying $||u_1||_2^2 = a_1$ and $||u_2||_2^2 = a_2$. In the system $\lambda_1$ and $\lambda_2$ are unknown and they will appear as Lagrange parameters. This talk describes joint work with T. Bartsch