Display Abstract

Title Solutions for a semilinear elliptic equation in dimension two with supercritical growth

Name Ignacio Guerra
Country Chile
Email ignacio.guerra@usach.cl
Co-Author(s) Manuel del Pino and Monica Musso
Submit Time 2014-02-27 18:23:19
Session
Special Session 40: Qualitative aspects of linear and nonlinear elliptic and parabolic problems
Contents
We consider the problem \begin{align*} -\Delta u &= \lambda u e^{u^p},\quad u>0,\quad\mbox{in}\quad \Omega,\\ &u= 0\quad \mbox{on}\quad \partial \Omega, \end{align*} where $\Omega\subset \mathbb{R}^2$ and $p>2$. Let $\lambda_1$ be the first eigenvalue of the Laplacian. For each $\lambda \in (0,\lambda_1)$, we prove the existence of solutions for $p$ sufficiently close to $2$. In the case of $\Omega$ a ball, we also describe numerically the bifurcation diagram $(\lambda,u)$ for $p>2$.