Contents |
In biochemical systems some of the biological/chemical species are present with only small numbers of molecules. In this situation discrete and stochastic simulation approaches are more relevant than continuous and deterministic ones. The fundamental Gillespie's stochastic simulation algorithm (SSA) accounts for every reaction event, which occurs with a probability determined by the configuration of the system. This approach requires a considerable computational effort for models with many reaction channels and biological/chemical species. In order to improve efficiency, tau-leaping methods represent multiple firings of each reaction during a simulation step by Poisson random variables. For stiff systems the mean of this variable is treated implicitly in order to ensure numerical stability. We developed fully implicit tau-leaping-like algorithms that treat implicitly both the mean and the variance of the Poisson variables. The construction is based on adapting weakly convergent discretizations of stochastic differential equations to stochastic chemical kinetic systems. Theoretical analyses of accuracy and stability of the new methods are performed on a standard test problem. Numerical results demonstrate the performance of the proposed tau-leaping methods. |
|