Display Abstract

Title Weighted quasilinear eigenvalue problems in exterior domains

Name Anoop Thazhe Veetil
Country Czech Rep
Email anoop@kma.zcu.cz
Co-Author(s) P. Drabek, Sarath Sasi
Submit Time 2014-02-27 08:24:22
Session
Special Session 14: Reaction diffusion equations and applications
Contents
We consider the weighted eigenvalue problem in the exterior domain \begin{equation*} \begin{align} -\Delta_p u &= \lambda K(x) |u|^{p-2}u \quad \mbox{in } B_1^c , \\u &= 0 \quad \mbox{on } \partial B_1, \end{align} \end{equation*} where $\Delta_p$ is the $p$-Laplace operator for $p\in(1,\infty),$ and $B_1$ is the closed unit ball in $\mathbb R^N,$ $N\ge 1.$ We consider both the cases $N\in(p,\infty)$ and $N\in[1,p].$ For some appropriate choice of $w \in L^1(1,\infty)$ with $w\geq 0,$ we prove that the Beppo-Levi space $\mathcal{D}^{1,p}_0(B_1^c)(:=$ the completion of $\mathcal{C}_c^\infty(B_1^c)$ with respect to $||\nabla u||_p$ norm) is continuously and compactly embedded into $L^p(B_1^c;w(|x|)).$ Using this embedding, we prove the existence of a positive principal eigenvalue for $K$ such that $K^+\not\equiv 0$ and $|K(x)| \le w(|x|)$.