Display Abstract

Title Thresholds on population density? - Not with chemotaxis (and slow enough diffusion)!

Name Johannes Lankeit
Country Germany
Email jlankeit@math.upb.de
Co-Author(s)
Submit Time 2014-02-27 02:30:02
Session
Special Session 115: Mathematical models of chemotaxis
Contents
We define and (for $q>n$) prove uniqueness and an extensibility property of $W^{1,q}$-solutions to \begin{align*} u_t&=-\nabla\cdot(u\nabla v)+\kappa u-\mu u^2\\ 0&=\Delta v-v+u\\ \partial_\nu v&=\partial_\nu u=0 , u(0,\cdot)=u_0, \end{align*} in balls in $\mathbb{R}^n$, which we then use to obtain a criterion guaranteeing some kind of structure formation in a corresponding chemotaxis system - thereby extending recent results of Winkler to the higher dimensional (radially symmetric) case.\\ {\bf Keywords: }chemotaxis, logistic source, blow-up, hyperbolic-elliptic system