Display Abstract

Title Positive solutions for a class of superlinear semipositone systems on exterior domains

Name Ratnasingham Shivaji
Country USA
Email shivaji@uncg.edu
Co-Author(s)
Submit Time 2014-02-26 20:54:07
Session
Special Session 14: Reaction diffusion equations and applications
Contents
We study the existence of a positive radial solution to the nonlinear eigenvalue problem: $$\begin{array}{lcl} -\Delta u(x) & = & \lambda k_1\left(\left|x\right|\right) f\left(v(x)\right); \; x \in \Omega_e\\ -\Delta v(x) & = & \lambda k_2\left(\left|x\right|\right)g\left(u(x)\right); \; x \in \Omega_e\\ \end{array}$$ $$\begin{array}{lcl} u = 0 = v & ; & \left|x\right| = r_0 (> 0)\\ u \rightarrow 0, v \rightarrow 0 & ; & \left|x\right|\rightarrow \infty\\ \end{array}$$ where $\lambda > 0$ is a parameter, $\Delta u = \text{div}(\nabla u)$ is the Laplacian operator, $\Omega_e = \left\{ x \in {\mathbb R}^N \big| \left|x\right| > r_0, N > 2\right\}$ and $k_i \in C^1\left(\left[r_0, \infty\right), \left(0, \infty\right)\right)$: $i = 1,2$ are such that $k_i\left(\left|x\right|\right) \rightarrow 0$ as $\left|x\right| \rightarrow \infty$. Here $f:\left[0,\infty\right) \rightarrow {\mathbb R}$ and $g:\left[0,\infty\right) \rightarrow {\mathbb R}$ are $C^1$ nondecreasing functions such that they are negative at the origin (semipositone) and superlinear at infinity. We establish the existence of a positive solution for $\lambda \approx 0$ via degree theory and rescaling arguments.